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Although textbooks usually present the conservation laws of energy and momentum only in the
laboratory frame of reference, it is important that an introductory physics course show that they are
valid in any inertial frame. It can be useful to apply the conservation laws in more than one frame
of reference so as to highlight that they are precise only in closed systems. This is of particular note
if one of the interacting partners is of near-infinite mass, whose share of the redistributed energy
cannot always be neglected. In this sense, the notion of “infinitely large mass” is frame dependent.
Balancing the energy and momentum in more than one frame of reference can help resolve some
common difficulties with regard to energy conservation. We show also that the energy-work
theorem holds in noninertial frames where inertial forces are treated as externabo7 @merican
Association of Physics Teachers.

[. INTRODUCTION phenomena—a very general statement that cannot be
checked by students at the time it is introduced.

In most universities and colleges, standard Introductory When Newton’s laws are presented in the unit on dynam-
Physics CoursedPC) introduce ideas of multiple represen- ics, it would be natural to apply the relativity just learned and
tations of physical reality in different frames of reference andconsider different frames of reference; few texts do so.
the relationship between those representations. Multiple refRarely is the concept of an inertial frame of reference even
resentations are related to the principle of invariance, and argefined. A notable exception is Tipler's: “A reference frame
important because, as Resnick, Halliday, and Krane claimn which Newton’s first law holds is called an inertial refer-
“Invariance principles often give us a clue about the work-ence frame.”? Such statements as “There is no single iner-
ing of the natural world; they signal that a particular relation-tial frame of reference that is preferred over all others for
ship is not an accident of one observer's preferred positioformulating Newton’s laws® when made, are often left
but is instead an effect of some deep underlying symmetry ofvithout justification although it does not need any sophisti-
nature.”! cated procedures tehow that Newton's laws match this

An IPC usually starts with kinematics, where the relativecondition? Relation(1) with constanu directly provides the
nature of motion is asserted and velocity transformation isndependence of acceleration on the observer:
established in its Galilean form:

a=a’. 2

Using (2), and under the additional assumption of force
wherev is the velocity of an object in the original frame of invariance with change of inertial frame of reference, one
reference, and’ the velocity in another frame moving rela- can infer that Newton’s second lawa=F, remains valid
tive to the original with velocityu. In this context the prin- for all inertial observers.
ciple of relativity is usually stated for the first time in the In regard to momentum and energy, IPC texts do not usu-
course. This principle claims the equivalence of all observerslly consider more than one observerhis is somewhat
in application of physical laws to describe natural surprising as the expressions for energy and momentum are

v=Vv'+u, 1)
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velocity dependent so it is a valid question to ask whether
energy/momentum conservation laws satisfy the relativity
principle. In two text$,” we found this problem addressed in
an optional addendum, but only briefly.

The laws of momentum and energy conservation are of
central importance; however, they should not be applied au-
tomatically. For them to hold at all requires that the system
be closed, that is, its objects should be considered as inter- Soframe Z
acting pairs. This constraint is not often appreciated and may
be seen as too “academic,” or of little “practical” value. (@)
Students holding these views are on shaky ground facing the
serious difficulties illustrated in Sec. lI.

u

[I. CONSERVATION LAWS AND THE PRINCIPLE

OF RELATIVITY v+u
o—p
The reason why Newton’s second |&RAt=Ap) remains
valid under the Galilean transformation of velocities is be- vru
cause momentum is a linear function of velocity, and force is —e
invariant in classical mechanics. The observer invariance of .
the conservation of linear momentum in a system of collid- S frame P
ing particles can be shown directly. Suppose obseBfer ()
claims
(b)
i f
; m;Vj _; mjvi, (3 Fig. 1. One-dimensional elastic collision of a ball with a solid wall in the

. wall's rest-frames? (a), and in frameS, moving with velocity relative to the
wherev} stands for the initial velocity of thgth particle and  wall (b).
v]-f the velocity of the same particle, following a physical
interaction. Then the moving obsern@rinfers:

z m'(vi-+u)=2 m (v +u) (4) IIl. REPRESENTATIVE EXAMPLES AND
— LY T ' DISCUSSION

which is true under the constraint of the closed system. Such
an invariance regarding energy conservation, however, is nq}o
obvious. The potential energy is velocity independent and s
does not present a problem, but for the kinetic energy of th
same system, observ&f claims (in the case of elastic col-
lisions):

(1) Consider the simplest example of an interaction in-
Iving an object with near-infinite mass: one-dimensional
Blastic collision of a ball against a solid wall. This common
xample is usually considered in the wall’s rest-frars,
[Fig. 1(a)]. Note that the momentum of the ball is not con-
served, but its energy seemingly(ihe collision is elastic
P2 1 fio The lack of symmetry betwee_n energy and momentum may
2 > m;(v;) ZZ > m;(v;)*. (5)  puzzle the novice learner. This is because the ball does not
! ! comprise a closed system so, in fact, neither the momentum
Meanwhile, the same process is described by obser&er's nor energy of the ball are conserved. Nevertheless, while one
1 1 can neglect the energy transferred to the w@llastic colli-
> Im(vVi+u)?=Y = m(vi+uZ (6)  sion), onecannotneglect the transferred momentum. As a
o2 o2 consequence, some learners perceive the idea of energy con-
servation of theball.
In fact, as regards the wall-ball system, one can say that
1 i | 1 ) momentum was redistributed by the collision, but the energy
Z 5 Mj(vp)“+myju+ 5 mu was not. It remained with the ball. Why? Here the infinite
mass played its role. I6° one may account for the energy
and momentum in the collision:

Hmo})2=3(mof)2+ 3 Mof)? @)

Thus we obtain

— 1 f\2 fo L 2)

Z (2 m;(v)) 2+ mvju+ 5 mu? |,

which only holds true because momentum is consef@gd d

It is therefore essential that the system is closed. This fact ign

worthy of attention. mob=mu!+Muo! (8)
Moreover, the objects in this example were treated as

point masses of undefined magnitude and no work termwherei indicates initial and the final velocities of the ball

explicitly appeared in the energy balance. In more realisti@nd wall of masses andM, respectivelyv, andv,,). After

situations, difficulties start to appear when the relativity prin-solving for the final velocities, one obtains

ciple is applied to balance work and energy, especially where

deformable bodies are treated in open sysfesn®ne of the

objects is extremely massive.

M+m

vi=—v} (for the bal), (9)
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i =20 (for the wal). (10

m
M+m

As the wall is infinitely larger than the balh{<M),
vi=—vl, ovl=0. 11

Consider now another fram®, moving with velocityu
relative to the wal[Fig. 1(b)]. In this frame, the change in
momentum is the same as it was3n However, the initial
energy of the ball is noym(u+v)? and its energy after the
collision is m(u—v)?, they are no longer equal. This fact
should only come as a surprise to the learner who insisted on
conserving the energy dahe ball in S° without a second

u
thought. Thus, observa, finds that velocities of the ball are S frame (@)
vh+u before andv{+u after the collision. The correspond- (b)
ing velocities of the wall arai and v,+u. So, the total
mechanical energy of the wall-ball system Is |n|t|aIIy Fig. 2. A cannon fixed on the ground, shoots a ball with a speed it is
i1 i 2,1 2 viewed in the ground’s fram&® (a), and in the framéS, moving relative to
E'=sm(v,+u) +3Mu (12 the ground(b).
and, finally,
Ef=im(u+v{)?+iM(u+ov!)2 (13

. . paradox: the change of the internal energy must be
Because of9) and(10), the energies12) and (13) coin- .,y aiant® or, in other words, the amount of explosives used

cide thus ensuring that the energy is conserved in an arbk, 00t he greater for an observer driving past the cannon.
trary inertial frame.

: S . , The paradox is resolved when we discard th i mp-
Solving this simple example which, at a first glance, con- e paradox is resolved when we discard the tacit assump

tion that the change in the cannon’s kinetic energy is negli-

gad;th the iquwalence ff tlhe o?sgrve][st,hma}; St'tmm?te;ugible. Indeed, taking into account the reaction velocity of the
ents 1o make a conceptual analysis of Ih€ situation 1€adingynnop ) - as recorded irs° [Fig. 2(a)], one rewriteg14a):
to their rediscovering of the importance ofclbsedsystem

for energy—momentum conservation. $1 one can neglect Mvg mo?

the wall in the energy balance either intentionally or through 2 + > =AEjy. (14b)
lack of awareness. In fran® the wall cannot be neglected;

the contributions ototh the ball and the wall are equally To observerS [Fig. 2(b)], the same energetic balance is
importanstoto balance both momentum and mechanical ergiven by:

ergy. InS° the velocity gained by the wall during impact is 2 2 2
small but its momentunM v, must be of the same order of M+AEint: Mu=ve)”  m+u)
magnitude as that of the bat_thv_{,. Obviously, the equality of 2 2 2
magnitudes established within the linear dependence doesThus, the views o&° andS, Egs.(14b) and(15b), become

not hold in the producN(vW) which can, therefore, b.e consistent; they are satisfied by the saftg,;. In checking
neglected. From an arbitrary frang; the energy balance is g tact one needs to use the momentum conservation
different due to the initial energy and momentum of the Wa”'mv —Muv.=0

-=0.

(2) The treatment of an explosiof@n inelastic collision rpaqeTirst two examples illustrate the same idea. Neglect
reversed in timgintroduces internal, nonmechanical energy ;¢ iha near-infinite mass in the energy balance may misrep-

into the discussion. Suppose a canntixedto the ground,  esent the interaction and mislead the learner. In general,
shoots a ball with speed. An observer on the groun&’,  jyteraction will change the kinetic energy afl interacting
accounts for the energy balance: partners, no matter how big they are. Only by taking this into
mo 2 account does the energy conservation become observer-
T=AEim, (149 invariant. Comparing the descriptions 81 (where the mas-
sive component is at rgsand in another fram& highlights
where AE; is the change of the internal energy of the ex-this point.
plosives converted into kinetic energy of the ball The (3) We now consider interactions spatially and temporally
cannon’s share of the kinetic energy is neglectedlifg,  extended. The work done during an interaction must now be
apparently on the grounds of the near-infinite mass of théncluded in balancing the energy. Textbooks treat such pro-
cannon. It is not crucial for the observer to be aware of thecesses exclusively in a laboratory frame of reference though
interaction between the cannon and the ball. This is not thany inertial frame would be equally valid according to Gali-
case for an arbitrary observ& moving at velocityu (Fig.  leo’s principle.

(15b)

2). By neglecting the cannon, obsen&rwould be making Suppose a ball, initially at height, slides down along a
an error in the energy balance: perfectly smooth curved tradiFig. 3@]. The track is fixed
) ) ) to the ground. Students are often asked to predict the final
(m+M)u _M+w?”  Mu velocity of the ball. Without difficulty, most equate the po-
5 +AE = 5 + 5 (159

tential energy of the balloften mistakenly understood to be

Equations(149 and (158 cannot be satisfied by the same possessed by the ball itsetb its kinetic energy at the base:

amount of internal energAE,,;. This already presents a mgh= 3mv2. (16)
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S frame

(%)

Fig. 3. A ball slides down along a perfectly smooth curved track which is (b)
fixed to the ground. The final velocity of the ground is neglecteglthe
view in the ground’s fram&®; (b) the view in the frames, moving relative

to the ground. Fig. 4. A ball slides down along a smooth track fixed to the ground. The

final velocity of the ground is not neglecte@ the view in the frame®, in
which the ball was initially at rest(b) the view in the frameS, moving
relative to the ground.

This implies for the final velocity

v=+/2gh. a7 /—
But, suppose one considers the same event in the moving Ur vb UE 2gh\ 1+ M (24

frameS [Fig. 3(b)]. ObserverS perceives the initial speed of
the ballu, and, by the application ofl) to (17), the final
speed’ of the ball:v’ = y2gh + u. There the initial energy

Obviously, ifM>m, v,~v, and the resulf17) is confirmed
but only as an approximation.
The same process in the moving frai®¢Fig. 4b)], has

Is given by the ball with an initial speed. The final speeds anﬁ[,f for
Ei=mgh+ imu?, (18  the ball andv ,’Ef for the Earth. Balancing the energy leads to
whereas the final energy is mgh+ imu?+ Mu?=im(v,")2+ M (v 32 (25)
E;=im(\/2gh+u)2. (19 which, together with the momentum conservation,
Hence,E'=E" is only true foru=0. This would imply that mu+Mu=mo'+Mog' (26)
the rest frame is unique, in perfect accord with Aristotle’syje|ds the solution
assertion.
The incompatibility of Eqs(18) and (19) arises from ne- L 2gh
glecting the fact that the ball alone does not present a closed vp =u+t m (27
physical system. But, due to the near-infinite mass of the (1+ M)
earth, neglecting it |r§30 does not cause a significant numeri-
cal mistake. But is this so in other frames? and
Tht_a correct treatment for energy conservatiorsin Fig. ah
4@lis vii=u- gt [ (29)
m
mgh=3m(v})*+3M(vp)?, (20 (”M
wherem andM are the masses of the ball and the Earth, andl’hus the speea, of the ball relative to the Earth is still

vl and vt their final speed$® Conservation of the linear .
; given by
momentum provides

mo{+MuvLE=0. (21) v/ =vp' —vg'=1/2gh 1+M (29)

Solving Egs.(20) and(21), one obtains

as it was in(24). This confirms the validity of energy con-
2gh servation in any arbitrary inertial frangunder the condition
b T m (22)  that the system be closed. Only when it is, does Galileo’s
(1+ _) principle hold.
This example also reveals tivgeractivenature of forces.
The elastic force actequally on the ball and on the track,
__m 2gh 23) changing kinetic energies of both. By using an arbitrary
frame of reference this fact can be made more explicit in a
way which might be unique in a classroom.
The fact that changes in the energy of the Earth must be
and, for the final relative spead of the ball, taken into account might seem odd: in fragfewe neglected

f_
UVn=

1+
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them on the grounds of Earth’s “infinite mass.” Surely, the

fact that the Earth is near-infinitely bigger than any other S frame
object, seems to be observer-invariant. However, as we have
seen, in an arbitrary frame of referen8ethe Earth’s share

in the energy balance may be of the same magnitude as those
of other objects and cannot be neglected, as it wairif

this act of neglecting was related to the fact of the near-
infinite mass of the Earth, one could now consider the mean-
ing of the notion “infinite mass” as frame dependent.

(4) The energy-work theorem equates the change in ki-
netic energy of a system to the net work done by all active
forces: AE=2;W)."* Though its application is not re-
stricted to closed systentin the case of a closed system, this
theorem can be reduced to energy conservgtidifficulties
may arise when accounting for some everyday experiences
(jumping, climbing, accelerating dawhich cannot be de-
scribed on themacroscopiclevel in terms of work as it is
normally defined? In an attempt to solve this difficulty a
new concept of “pseudowork” was introduced, which is ap-
propriate to describepensystems and deformable objetts.
Sherwood* clarified the existing dichotomy in energy-work
macroscopic descriptions of physical systems, distinguishing
between the energy-work theorefar, beyond mechanics,
the first law of thermodynamigsand the C.M.(center of
mass$ equation. Which of the two descriptions should apply
depends on the specific interests of the user. PenCréng-
gests that pseudowork could provide simpler solutions in
specific cases, but the standard textbooks have not yet ©
adopted this concept. Our study focuses on energy-work de-
scriptions of closed systems and suggests an alternative _ , , _ _
physical interpretation. Fig. 5. (@ A boy is standing on a massive platform, moving to the right

. . . elative to the groundview in frameS fixed to the ground The boy throws
Suppose a boy IS standlng ona Iarge pIatform moving tdcl stone to the left with a speedrelative to himself as viewed in the frame

the right With a Speet_l/Z [Fig. aa)] He throws al stonen, <°, of the platform(b), and as is viewed in the fran®(c).
to the left with a relative speed [Fig. 5(b)]. Relative to the

Earth[frameS, Fig. 5c)], the stone is then observed moving
at a speed—v/2). The energy-work theorem applied by the Another observer, on the ground frarSeaccounts for the

ground observesS may provide an odd result. The stone same process differently. The work of the force on the stone
retains its kinetic energy, so if, for any reason, the kinetic, P Y.

energy of the massive platform was neglected, a parado¥ Wan stone = Fd, but the displacemerd along Wh'gh the
emerges: was there any work performed? The act of throwforce was applied on the stone(ia S): d=d,— (v/2)t*. As
ing is obviously energy consuming, then how can one acthe time of throwing can be estimated s=d,/(v/2) one
count for it? In fact, in this interesting case, the effort appliedobtainsd=0 (the stone approximately remains in the same
by the boy is entirely invested in the change of the kineticlocation when being thrown which implies zero work on
energy of the “infinitely massive” platfornfwhich has been the stone. The only force that performs a workSns the
accelerated friction force applied on the platform. This work is:
Let us first take the view of the obsen@twho is located  Wan plar= Fdpia- AN estimation of the platform displace-
on the platform. The act of throwing is perceived as extendednent during the throwing yieldsd = (v/2)t* =d,. Then,
along the distancel,, and time,t*. The energy balance is W5, plat= Fdpias=Fdo exactly reproduces the work on the

v/2

described as follows: stone inS, (31). Therefore, in the fram& the energy-work
; i balance becomes
AElstgne:Wtfg stone:AEgEY’ (30) m 2
. 1] .
where AEEIIgtf: W(?n plaﬁ:T:AEggy' (33
2
AEKN — my w —Fd (31) This equation reflects the same loss of chemical energy
stone 2 7 on stone~ * 0" AEpyg, within the boy. Summarizing we see that as far as the
Therefore closed system is treated, energy conservatibe energy-
work theoren is equally valid for both observers’ descrip-
mu?2 - tions. The difference between the observers’ descriptions lies
—5 = Fdo=AEg, (32 in their identification of works done by the active forces. As
_ far as a closed system is considered, the interpretation of the
F is the force applied by the boy on the stone, ”éy is  energy-work balance does not require the pseudowork con-

the internal energy invested by the boy.3f friction forces  cept.
between the platform and the boy do not perform any work In fact, this same example may be even more impressive
on a stationary platfornithey perform pseudowot&9. without involving a platform. A walking boy throws a stone
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S frame

()
-+
Fig. 6. A person is holding an object in an ascending elevator. The situation
is viewed in two frames: A—of the elevator, and B—of the Earth. In A, the 7%
passenger does not do any work. From the point of view of B, the passenger

does work.

Fig. 7. In the ground’s fram&°, the contact elastic force acts on the ball at

right angles to the surface and does not perform w@k In frame S,

moving to the left, the contact force is not perpendicular to the ball’s veloc-
backwards. The unchanged kinetic energy of the stone, as and does perform workb).

perceived by an on ground observer at rest, implies that the
second partner in the interaction, namely the Earth, is impor-
tant in the redistribution of energy. The Earth is accelerated
by an infinitely small amount, but absorbs a finite amount ofand do not define the physical system; this makes it impos-
energy and momentum. It is this which ensures that the ersible to differentiate between internal and external forces.
ergy and momentum balance. Although this inference may (6) Is the energy-work theorem valid in noninertial frames
be surprising, the other main assertion should no longer bef references? The answer is not obviotiFhe description
so: to account correctly for the energy and momentum on@f reality in such frames involves inertial forces. These
may find it necessary to consider a closed physical systemforces are commonly left out of IPC textbooks and standard
(5) The energy-work theorem is unlike the law of energy high school curricula in spite of the natural tendency of nov-
conservation in that it may be used to describe open physicd¢e learners to interpret their sensory experience in terms of
systems. Then the work done by external forces may appeatich forces? Moreover, such ideas are ordinarily interpreted
explicitly. Any change in the kinetic energy of objects is by the instructor as a force—motion misconception. However,
obviously frame dependent. Therefore, it is important toit is legitimate to describe physical processes in noninertial
show that the work done by external forces has a similaframes. Newton's laws and energy-work theorem hold in
frame dependence, such that the validity of the energy-workoninertial frames with the addition of inertial forces. Inertial
theorem is preserved. forces are not interactive and do not appear in action—
Halliday et al1® consider the example of a person holding reaction pairs. Consequently, inertial forces should be always
an object in an ascending elevatig. 6). The situation is treated as external, and this is the only difference between
treated in two frames: A— of the elevator, and B— of thethem and real forces.
Earth. In A, the passenger does not do any work, as the Let us consider an alternative account for exar@lein
object he holds is at rest. The kinetic energy does not changbe frame of the ball itselfS°, which presents a noninertial
(neglecting microscopic trembling of the passenger’'s hand frame. ObserveB®, attached to the ball, perceives the track
From the point of view of B, the situation is different and and the Earthi{not the ball moving [Fig. 8@)]. The kinetic
work is done by the passenger. This example, howevegnergy of the ball remains zero, and the tré€krth accel-
might not seem sufficiently general as the net wardkgravi-  erates from rest to its final velocity, equal in magnitude and
tational force and contact forcés zero for both observers. opposite in direction ob,, (24). The total mechanical en-
Although Resnick et al. considered a more general ergy of the ball-Earth system & is
examplé’ to infer the validity of the energy-work theorem in i _ . >
an arbitrary frame, they did not explain the specific role of ~E'=mgh (initially), E'=3 Muv  (finally). (34

the “very massive” partner in the interactiothe Earth or By direct use of Eqs(20), (22), and(23) for mgh, and Eq.

platform). To show s role one can consider the same 24) for v, , one obtains the total change of the mechanical
energy-work balance in more than one frame of reference, a nergy:

we did in our examples.
It is instructive to expose the “mechanism” by which AE=E'—E'=Mgh. (35)
changes in the amount of kinetic energy and in the values of
work reflect the change of the frame. For example, while in This result could have been foreseen qualitatively. The
frame S° [Fig. 7(a)], the contact elastic force acts on the ball work W;, done by the inertial forcé;, can be calculated
at right angles to the surface, hence, perpendicular to the badlong the curved trajectory of the track. Each infinitesimal
velocity, it is no longer so in framé [Fig. 7(b)], where piece of this trajectory could be considered as rectilinear, and
velocity u is added to each velocity. Therefore, the contactnclined at anglea varying from point to point. Since the
force does perform work . This work causes the greater acceleration of the sliding ball in the frame of the Ea,
increase of kinetic energy as measured in$hfeame. Most  is well known, g sin «, the acceleration of the tradEarth
authors, trying to simplify the presentation, do not specifyin the frame of the ballS°, can be easily ascertained. The
the frame of reference in which they consider energy transferelationsdr ;= —dry, and ag,q= —ay, between the dis-
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This means that under the condition

muy2gh<mgh (40
or

u(frame velocity relative to the ear)t§v(final object velocity in S9) s
(41)

one can neglect the contribution of the earth’s kinetic energy.

The terms which are dependent on the object-to-earth
mass ratio were finally neglected {88) and (39).2° Condi-
tions (40) or (41) explain why it is preferable to describe the
energy of a physical process from the Earth’s rest frame.
This point, once grasped, may enhance the correct under-
standing of conservation laws with the awareness of redistri-
bution of energy following the force interaction between dif-
ferent objects. Thus it explains the most quoted formula in
introductory physics textssmv?=mgh, which only applies
because we do not live on a small asteroid, where this for-
mula would be a mistake. If we did live on such an asteroid,
the problem-solving in physics classes would be much more
complicated.

Fig. 8. (a) Example(3) as viewed in the noninertial fram@ of the ball
itself. (b) Acceleration and displacement of the track as viewed in frafne

placements and accelerations in the two frames are obvio
[Fig. 8b)]. Therefore, the elementary work performed by theqv CONCLUSION
inertial force is This paper has made three suggestions. First, that under-
o —_ o graduate students could better understand the problem of
AdWin.1 = Fin® dfgaa= (~ Mapay) - (— dra) measuring energy-momentum balances when they are treated
=Mg-dryy=Mgdh, (36) in more than one frame of reference. Seeing the laws of
energy-momentum conservatidor the energy-work theo-
rem) in different frames of reference, changing the view-
point, requires us to treat all interaction partners and makes
xplicit the closed-system constraint. Second, we have
hown how the neglect of “infinitely large masses” may
lead to mistakes, and also that use of multiple frames can
W, i=W,,,=Mgh, (37  help to solve this problem. Third, we have suggested an ap-

L —_ plication of the energy-work theorem to account for energy-
The results(37) and(35) exactly coincide, confirming the work balances in noninertial frames of reference where iner-

validity of the energy-work theoremdE = Wiy ) in frame | forces should be treated as external. This is in accord
S°. For the observe®”, the change in mechanical energy is itn Einstein's principle of equivalence.

the change of the Earth’s energgumerically enormous In general, viewing the process from the perspective of the
and is due to the work performed by the inertial force. Ac-g|ativity principle is conceptually beneficial as it helps stu-
counting for inertial forces in the energy-work balance ap-gents operationally assimilate the laws of conservation, the

pears to be the same as accounting for any interactive extestal nature of force interaction, and Galileo’s relativity
nal forces. This conclusion could be foreseen on the basis (Hrinciple.

Einstein’s equivalence principle.

(7) Is there an inertial frame which would allow us to
neglect the contribution of the Earth, thus greatly simplifying ACKNOWLEDGMENT
the energy description of physical processes? To answer this ) )
question, we compare the changes in kinetic enefgiethe We thank an anonymous AJP reviewer who made stimu-
ball and the Earth in exampl@)] as measured in an arbitrary lating comments on the early version of this paper.
inertial frameS. Using Egs.(27) and(28), one obtains

Wherer o and ay,c are measured i8°, apy andr,—in
s°. dhiis a vertical component of the displacemedn,,. We
have used here an evident fact thasSfhe, ,-drp=g-dr .-
Finally, integrating over the whole drop, one obtains the tota@
work done by the inertial force:
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